Скачать GAMA
Получи бонус   100% + 100 FS  на свой депозит

Кольца планет. Планета с кольцами — удивительный сатурн

Сатурн — крупное небесное тело, расположенное на шестом месте от Солнца. Известна эта планета с кольцами еще с древних времен. Сатурн является одной из планет-гигантов, составляющих Солнечную систему.

Общие сведения

Планета, имеющая кольца, удалена от Солнца на 1,43 миллиарда километров. Это расстояние почти в 9,5 раза больше, чем от нашей планеты до делает оборот вокруг нашего светила за 29,4 земных года.

Сатурн — планета уникальная. Он тяжелее Земли в 95 раз. При этом в диаметре она больше всего в 9 раз. Плотность равна 0.69 г/куб. см — это ниже, чем у воды. Если предположить, что в космосе раскинулся бескрайний океан, Сириус бы в нем мог плавать! Все другие планеты системы плотнее воды — какие-то — незначительно, какие-то — намного. Такая низкая плотность и при этом очень быстрое вращение вокруг своей оси сжимают планету больше, чем какую-либо другую. Его радиус на экваторе почти на 11% больше, чем на полюсах. Такое сильное сжатие нельзя не заметить в телескоп — планета видна сплюснутой, а не круглой.

Планета с кольцами не имеет твердой поверхности. То, что с Земли кажется поверхностью, на самом деле является облаками. Верхний слой — замерзший аммиак, ниже находятся гидросульфидаммониевые облака. Чем глубже погружаться в тем становится горячее, а плотность — выше. Примерно на середине радиуса водород становится металлическим.

Кольца

Раньше считалось, что Сатурн — единственная планета Солнечной системы, которая имеет кольца. Однако на сегодняшний день известно, что это утверждение неверно. Все четыре газовых гиганта имеют кольца. Но не зря именно Сатурн известен нам как планета с кольцами. Дело в том, что именно у нее самые значительные, уникальные и заметные кольца, у других планет их видно не всегда и не в любой телескоп.

Как и предполагал еще Гюйгенс в 1659 году, эти самые кольца — вовсе не одно твердое тело, это миллиарды миллиардов очень мелких частиц, вращающихся по окружности.

Всего вокруг Сатурна вращается четыре кольца — три основных и одно едва заметное. Все кольца отражают света больше, чем сама планета. Центральное кольцо — самое яркое и широкое, его отделяет от внешнего кольца щель Кассини, составляющая почти 4 тыс. километров. В этой щели расположены полупрозрачные кольца. Внешнее кольцо разделено полосой Энке. Внутреннее же кольцо — почти дымка, настолько оно прозрачно.

В реальности эти кольца очень тонкие. Их толщина — менее тысячи метров, хотя диаметр — более 250 километров. Кажется, что эти кольца очень мощные и громоздкие, но было высчитано, что если собрать все вещество, их составляющее, в одну «кучу», диаметр этого тела будет не больше 100 км.

Изображения, которые нам передают зонды, дают понять, что кольца состоят из множества мелких колечек, напоминающих дорожки грампластинок. Большая часть частиц, которые составляют кольца, не превышают нескольких сантиметров. Немногие из них больше нескольких метров. И уж единицы — 1-2 километра. Вероятнее всего, все они состоят изо льда или же вещества, похожего на камень, но покрытого льдом.

Ученые не уверены в происхождении колец. Есть версия, что они возникли одновременно с самой планетой. В любом случае материя, составляющая кольца, постоянно замещается, пополняясь, возможно, за счет разрушения мелких спутников.

Спутники

К концу февраля 2010 года было известно о 62 Большая их часть вращается вокруг своей оси с той же скоростью, что и вокруг планеты, поэтому они всегда повернуты к ней одной стороной.

Самый крупный спутник Сатурна — Титан. В данный момент имеется версия, что сейчас на Титане условия схожи с теми, которые были 4 миллиарда лет назад на Земле, когда жизнь едва зарождалась.

Между спутниками и кольцами наблюдается полная согласованность. Некоторые из них, по наблюдениям ученых, являются «пастухами» для колец, удерживая их на своих местах.

Исследования

Планета с кольцами заинтересовала людей еще в 1609 году, когда Галилей начал наблюдения за ней. С тех пор исследования планеты велись со многих телескопов, а в 1997 году был запущен исследовательский аппарат. В июле 2004 года он вышел на орбиту планеты. Кроме этого, зонд «Гюйгенс» спустился на Титан для изучения его поверхности.

Планета, окруженная кольцами, не имеет твердой поверхности. Ее плотность ниже, чем у всех тел в Солнечной системе. Состоит планета из самых легких элементов системы Менделеева — гелия и водорода.

Облака Сатурна образуют почти Это было обнаружено еще в 1980 году пролетающим мимо «Вояджером». Такое явление не наблюдалось ни в одном другом месте Солнечной системы. Более того, эту форму облака на северном полюсе планеты сохраняли 20 лет.

Сатурна может похвастать которого никогда не видели ученые в других местах. Уникальность их не только в том, что само сияние голубое, а на облака отражается красный цвет, но и в том, что сияние покрывает весь полюс, хотя на Юпитере и Земле всего лишь окружают магнитные полюса. Снимки кольцевых сияний Сатурна дают возможность заподозрить, что заряженные Солнцем частицы подвергаются воздействию других магнитных сил, природа которых на данный момент не исследована.

Наша Солнечная система состоит из Солнца и планет, звезд, комет, астероидов и других космических тел. Сегодня мы поговорим о планетах, которые окружены кольцами. У каких планет есть кольца, Вы узнаете из этой статьи.

Как называется планета с кольцами?

Преимущественно кольца имеют только планеты-гиганты, о которых мы поговорим ниже. Кольца представляют собой образования из пыли и льда, которые вращаются вокруг небесного тела. Концентрируются они возле экватора и тем самым образуют тонкие линии. Такая особенность связана с осевым вращением планет: стабильное гравитационное поле присутствует в экваториальной зоне. Это и удерживает кольца вокруг планеты.

У каких планет есть кольца?

В нашей Солнечной системе кольца имеются у планет-гигантов. Самые большие и четко видимые кольца у Сатурна
. Впервые их обнаружил в 1659 году голландский астроном Христиан Гюйгенс. Всего колец 6: наибольшее из них поделено на тысячи маленьких колечек. Они состоят из кусочков льда разного размера.

В конце ХХ века, когда изобрели космические корабли и точные телескопы, ученые увидели, что кольца есть не только у Сатурна. В 1977 году во время исследования Урана
, было замечено свечение вокруг него. Оказалось, что это кольца. Так было открыто 9 колец, а «Вояджер-2» в 1986 году обнаружил еще 2 кольца – тонких, узких и темных.

В 1979 году космический аппарат «Вояджер-1» открыл кольца вокруг планеты Юпитер
. Его внутреннее кольцо слабое и соприкасается с атмосферой планеты. И, наконец, в 1989 году «Вояджер-2» обнаружил вокруг Нептуна
4 кольца. Некоторые из них имели арки, области, где наблюдалась повышенная плотность вещества.

Тем не менее, современная высокоточная техника позволила открыть новые тайны нашей системы. Последние исследования ученых показали, что кольца есть у спутника Сатурна – Рея. Также карликовая планета Хаумеа, которая вращается в периферийной части Солнечной системы, имеет свою систему колец.

КОЛЬЦА ПЛАНЕТ, образования, обращающиеся вокруг планеты в её экваториальной плоскости и имеющие вид диска. Кольца планет расположены на определённом расстоянии от планеты и состоят из совокупности твёрдых частиц небольшого размера, представляющих собой практически бесконечное число мелких спутников планеты. В Солнечной системе кольцами обладают все планеты-гиганты, у планет земной группы колец нет. Наиболее известна система колец Сатурна (впервые наблюдал Г. Галилей в 1610; Х. Гюйгенс в 1655 установил, что это система колец). У других планет-гигантов кольца открыты лишь в 1970-80-х годах (у Урана — при покрытии им звезды, у Юпитера и Нептуна — при пролёте вблизи планет КА «Вояджер»).

Структура колец.
Кольцо Юпитера расположено на расстоянии 50 тысяч км от условной границы в атмосфере планеты (с давлением около 1 атмосферы) и имеет ширину около 1000 км. Кольцо представляет собой область относительно малой плотности, заполненную преимущественно силикатными частицами малого размера (менее 10 -5 м), придающими области оранжеватый цвет. По направлению к Юпитеру и от него эту область продолжает диффузная туманность более или менее однородной структуры.

Реклама

Кольца Сатурна обладают значительно более сложной структурой. В них выделяют семь областей (зон).

Три основные концентрические зоны: внешнее кольцо А, наиболее яркое среднее кольцо В (эти кольца можно наблюдать даже в обычный бинокль) и довольно прозрачное «креповое» внутреннее кольцо С, не имеющее резкой границы (рис. 1). Кольца А и В разделены так называемой щелью Кассини шириной около 4700 км, кольца S и С — так называемой щелью Максвелла шириной около 270 км. Наиболее близкую к планете внутреннюю область кольца С выделяют как кольцо D. У внешней границы кольца А находится очень узкое кольцо F нерегулярной формы, за которым расположено кольцо G и самое внешнее, практически прозрачное кольцо Е. Внешняя граница кольца А находится на расстоянии около 75 тысяч км от условной границы в атмосфере планеты (с давлением 1 атмосфера), внутренняя граница кольца С — на расстоянии около 20 тысяч км. Таким образом, протяжённость чётко различимых колец Сатурна — около 55 тысяч км, в то время как их толщина не превышает 3,5 км. Преобладающий размер частиц колец — несколько сантиметров, но встречаются также частицы с характерным размером несколько микрометров и крупные фрагменты размером в единицы и десятки метров. Мелкие частицы участвуют в образовании пылевой плазмы, находящейся над плоскостью кольца В. Пылевая плазма образует радиальные тёмные полосы (так называемые спицы — dark spokes), контролируемые магнитным полем планеты. Угловая скорость «спиц» (в отличие от кеплеровой скорости частиц колец) совпадает с угловой скоростью собственного вращения планеты. Плотность колец не велика — сквозь них просвечивают звёзды. По данным ИК-спектрометрии, частицы колец Сатурна, вероятно, состоят из водяного льда или покрытых льдом частиц другого химического состава. Суммарная масса частиц колец примерно соответствует спутнику диаметром около 200 км. В соответствии с законами Кеплера, скорость движения частиц во внутренней зоне кольца больше, чем во внешней.

Экватор Сатурна наклонён к плоскости эклиптики под углом 27°, поэтому в разных точках орбиты планеты кольца при наблюдении с Земли видны под разными углами. При наиболее благоприятной конфигурации видна вся их ширина — наблюдается так называемое раскрытие колец. В другом предельном случае кольца выглядят как очень тонкая полоска, видимая лишь в крупные телескопы. Это происходит, когда плоскость колец проходит точно через центр Солнца и их боковая поверхность оказывается неосвещённой либо когда кольца обращены к наблюдателю на Земле «ребром». Период обращения Сатурна вокруг Солнца и, соответственно, полный цикл изменения фаз колец составляет около 29,5 лет.

Кольца Урана (рис. 2) очень тёмные и узкие, состоят из частиц, не имеющих ледяной оболочки. К концу 2008 года у Урана открыто 13 колец, обозначаемых буквами греческого алфавита (α, β, γ, …). Самое крупное из этих колец (ε) имеет неравномерную ширину и форму. Плоскость колец Урана почти перпендикулярна плоскости эклиптики.

Кольца Нептуна образованы тёмными частицами и состоят из четырёх узких зон. Они отличаются ещё более нерегулярной формой и переменной плотностью, поэтому выглядят состоящими из отдельных «арок». Два наиболее характерных кольца с арками названы в честь учёных Дж. К. Адамса и У. Леверье, предсказавших существование Нептуна путём расчёта его орбиты.

Формирование колец.
Образование систем колец вокруг планет-гигантов является прямым следствием законов механики и напоминает процесс формирования планет. Все кольца находятся внутри так называемого Роша предела — области, в которой спутник планеты может быть разорван на части за счёт приливных сил. Этот эффект препятствует консолидации частиц, находящихся вблизи планеты, и, соответственно, образованию крупных спутников. Современная конфигурация колец обязана своим происхождением влиянию гравитационного притяжения спутников планеты, находящихся в ближайших окрестностях (или даже внутри) структуры колец и называемых по этой причине «пастухами». Частицы колец, сами представляющие собой маленькие спутники, оказываются в резонансах с более крупными спутниками планеты (т. е. отношение периода их обращения к периоду обращения спутника выражается простой дробью — 1/2, 2/3 и т.п.). Это приводит к нарушению однородной структуры колец, в частности к образованию внутри них щелей (например, щели Кассини в кольцах Сатурна), по своей природе аналогичных «пустым» областям (так называемым люкам Кирквуда) в Главном поясе астероидов (смотри Астероиды). Те же причины вызывают генерацию волн плотности, формирование иерархической структуры колец и их расслоение на тысячи тонких спиральных колечек (ringlets), наблюдаемых в структуре основных колец Сатурна (рис. 3).

Наличие спутников с очень близкими орбитами приводит также к эффекту гравитационной фокусировки и концентрации частиц в тонких кольцах Урана и к образованию сгустков частиц (арок), дрейфующих в азимутальном направлении у колец Нептуна. Механизм образования арок до конца не понят, хотя одним из объяснений служит наличие резонансов частиц колец со спутником Нептуна Галатеей, поскольку эксцентриситеты и наклонения орбит частиц и спутника практически одни и те же. Резонансы препятствуют равномерному распределению частиц вдоль орбиты. Таким образом, кольца планет представляют собой сложную открытую систему частиц, находящихся в орбитальном движении и одновременно испытывающих хаотические взаимодействия. В результате в системе возникает эффект самоорганизации, создающий упорядоченность в конфигурациях колец (в первую очередь за счёт возникновения коллективных процессов и наличия в дисковой системе неупругих столкновений макро-частиц). Механизм самоорганизации заложен в самой системе; близкие спутники планеты оказывают на процесс дополнительное «стимулирующее» влияние.

Существуют две основные гипотезы происхождения колец планет: 1) образование колец из частиц протопланетного облака (из которых сформировались спутники вне предела Роша); 2) возникновение колец планет в результате распада астероида или кометы, попавших внутрь предела Роша. Характерным примером последнего события служит кольцо Юпитера. В пользу второй гипотезы говорит также оценка времени существования колец — около 0,5 миллиарда лет, что существенно меньше возраста Солнечной системы (около 4,5 миллиарда лет). В рамках этой гипотезы нужно считать, что кольца планет периодически возникают и исчезают в результате гравитационного захвата планетой малого тела и его последующего разрушения. Другим аргументом, подтверждающим гипотезу распада, могут служить, например, преимущественно ледяные частицы колец Сатурна. Эти частицы обладают высоким альбедо, т. е. не покрыты тёмным микрометеорным веществом, как это произошло бы с реликтовыми кольцами за время существования Солнечной системы.

Лит.: Planetary rings / Ed. R. Greenberg, А. Brahic. Tucson, 1984; Горькавый Н. Н., Фридман А. М. Физика планетных колец. М., 1994; Miner Е., Wessen R., CuzziJ. Planetary ring systems. В.; N. Y., 2007.

М. Я. Маров.

КАКИЕ ПЛАНЕТЫ ИМЕЮТ КОЛЬЦА?

У планет-гигантов Юпитера, Сатурна и Урана есть кольца. Впервые кольцо Сатурна было открыто голландским ученым Гюйгенсом в 1656 году, хотя еще раньше Галилей, рассматривая Сатурн в свой слабый телескоп, обнаружил, что эта планета чем-то окружена. Изучение Сатурна показало, что кольцо с поверхностью планеты нигде не соприкасается, состоит из нескольких колец, вложенных, друг в друга и разделенных промежутками. Кольца не являются сплошными, а состоят из отдельных частиц, крупных и мелких, которые как спутники вращаются вокруг планеты, в совокупности образуя кольца. Внутренние кольца обращаются вокруг планеты с большей скоростью, чем внешние. Ученые вычислили эти скорости, и оказалось, что гак вращались бы спутники Сатурна, т.е. в полном соответствии с законами Кеплера, ось Сатурна наклонена.к плоскости его орбиты, поэтому в телескоп наблюдается изменение вида кольца. Галилею эти кольца показались какими-то загадочными «ушами». Наличие кольца у Юпитера предсказал в 1960 году ученый С.К.Всехсвятский, а в 1979 году его сфотографировали американские станции «Вояджер». Кольцо Юпитера очень тонкое, состоит из мелких камней и пыли.

Оно обращено к Земле ребром и поэтому с Земли не видно.

Уран имеет очень тонкие кольца, которые в телескоп не наблюдаются. С помощью «Вояджера» обнаружили 11 четких колец и несколько нечетких, так называемых диффузных. Исследования спутников и колец далеких планет в будущем продолжатся и наверняка принесут много интересного.

Копирование материалов допускается только с указанием активной ссылки на статью!

Информация

Посетители, находящиеся в группе Гости
, не могут оставлять комментарии к данной публикации.

Сатурн

с его кольцом
самая удивительная планета
в солнечной системе
. Широкое, совершенно плоское кольцо окружает экватор планеты, как шляпу — ее поля. Оно расположено наклонно к тому кругу, по которому Сатурн
обходит Солнце за 29,5 лет. Поэтому в зависимости от положения Сатурна
на его пути кольцо поворачивается к нам то одной стороной, то другой. Каждые 15 лет оно располагается к нам ребром, и тогда его нельзя разглядеть даже в самые сильные телескопы, а это значит, что кольцо очень тонкое: его толщина не более 10 — 15 км.

Первым кольца Сатурна открыл в XVII веке Галилей
, Гюйгенс. В XIX в.
английский физик Дж. Максвелл
(1831-1879), изучавший устойчивость движения колец Сатурна
, а также русский астрофизик А.А. Белополъский (1854-1934) доказали, что кольца Сатурна
не могут быть сплошными.

С Земли в лучшие телескопы видно несколько колец, разделенных промежутками. Но на фотографиях, переданных с АМС, видно множество колец. Кольца очень широкие
: они простираются над облачным слоем планеты на 60 000 км. Каждое состоит из частиц и глыб, движущихся по своим орбитам вокруг Сатурна
. Толщина же колец не более 1 км. Поэтому, когда Земля при своем движении вокруг Солнца
оказывается в плоскости колец Сатурна
(это случается через 14-15 лет, так было в 1994 г.), кольца перестают быть видимыми: нам кажется, что они исчезают. Не исключено, что вещество, из которого состоят кольца, не вошло в состав планет и их больших спутников во время формирования этих небесных тел.

Знаменитый астроном Галилей
в 1610 г. обнаружил, что Сатурн
окружен чем-то. Но его телескоп был слишком слаб, и потому Галилей не смог разобрать, что он видит около Сатурна
. Только полвека спустя голландскому ученому Гюйгенсу удалось рассмотреть, что это на самом деле плоское кольцо, которое окружает планету и нигде к ней не прикасается.

Изучение Сатурна
при помощи более совершенных телескопов показало, что кольцо распадается на три части, составляющие как бы три независимых кольца, вложенных одно в другое. Внешнее кольцо отделяется от среднего темным промежутком — узкой черной щелью. Среднее кольцо ярче внешнего. Изнутри к нему примыкает полупрозрачное, как бы туманное, третье кольцо.

Что же собой представляют эти замечательные кольца? Может быть, это действительно твердые гладкие площадки? Нет, это не так. Выдающиеся ученые — английский физик Максвелл (1831 — 1879) и русская женщина-математик С. В. Ковалевская (1850 — 1891) своими расчетами доказали, что сплошное и твердое кольцо такого размера существовать не может: оно было бы мгновенно разрушено под влиянием различия в силе притяжения для разных его частей. Выдающийся русский астрофизик А. А. Белопольский тщательными наблюдениями Сатурна
подтвердил, что кольцо действительно не сплошное. Оказалось, что скорость движения в разных частях кольца различна. Это значит, что кольца состоят из мелких обломков, каждый из которых обращается вокруг Сатурна
с такой скоростью, какую имел бы спутник планеты годящийся на таком же расстоянии. Каждый такой обломок — как бы независимый спутник, сам по себе обращающийся вокруг Сатурна
.

Что же представляют собой эти обломки?
Это, вероятно, камешки разного размера: от нескольких сантиметров до метра в поперечнике, но, возможно, в кольцах есть и пыль. Кроме колец, вокруг Сатурна
движутся девять спутников. Из них один — Титан — по размерам приблизительно равен Меркурию и немного уступает ему по массе. Другие спутники имеют разные размеры. Но все они значительно меньше Титана.

Сатурн
во многом напоминает своего собрата — Юпитера

.

Многие странные, на наш взгляд, особенности Юпитера выражены у Сатурна
еще более резко. Например, он сжат у полюсов еще сильнее и состоит из вещества, более легкого, чем вода. Сатурн
, как и Юпитер, окружен сплошным облачным покровом, но только эта туманная пелена на нем менее пестрая. Полосы и пятна на Сатурне
хотя и есть, но они выделяются не так резко, как на диске Юпитера.

Атмосфера,
в которой плавают облака, имеет тот же состав, что и на Юпитере: в ней содержатся метан и аммиак. Расстояние Сатурна
от Солнца составляет 1426 млн. км, и солнечные лучи там греют в 90 раз слабее, чем на Земле, и в 3.5 раза слабее, чем на Юпитере. Понятно, что и мороз там очень силен — он доходит до 150°. Сутки на Сатурне
длятся 10 часов 14 минут

Наша Солнечная система, если иметь в виду ее вещество, состоит из Солнца и четырех планет-гигантов, а еще проще − из Солнца и Юпитера, поскольку масса Юпитера больше, чем всех прочих околосолнечных объектов – планет, комет, астероидов − вместе взятых. Фактически, мы живем в двойной системе Солнце-Юпитер, а вся остальная «мелочь» подчиняется их гравитации

Сатурн вчетверо меньше Юпитера по массе, но по составу похож на него: он тоже в основном состоит из легких элементов – водорода и гелия в отношении 9:1 по количеству атомов. Уран и Нептун еще менее массивны и по составу богаче более тяжелыми элементами – углеродом, кислородом, азотом. Поэтому группу из четырех гигантов обычно делят пополам, на две подгруппы. Юпитер и Сатурн называют газовыми гигантами, а Уран и Нептун – ледяными гигантами. Дело в том, что Уран и Нептун обладают не очень толстой атмосферой, а большая часть их объема – это ледяная мантия; т. е. довольно твердое вещество. А у Юпитера и Сатурна почти весь объем занят газообразной и жидкой «атмосферой». При этом все гиганты имеют железокаменные ядра, превышающие по массе нашу Землю.

На первый взгляд, планеты-гиганты примитивны, а маленькие планеты намного интереснее. Но может быть это потому, что мы пока плохо знаем природу этих четырех гигантов, а не потому что они малоинтересны. Просто мы с ними слабо знакомы. Например, к двум ледяным гигантам − Урану и Нептуну − за всю историю астрономии лишь однажды приближался космический зонд («Вояджер-2», NASA, 1986 и 1989 гг.), да и то – пролетел, не останавливаясь, мимо них. Много ли он мог там увидеть и измерить? Можно сказать, что к исследованию ледяных гигантов мы еще по-настоящему не приступали.

Газовые гиганты изучены намного детальнее, поскольку кроме пролетных аппаратов («Пионер-10 и 11», «Вояджер-1 и 2», «Улисс», «Кассини», «Новые горизонты», NASA и ESA) рядом с ними длительно работали искусственные спутники: «Галилео» (NASA) в 1995-2003 гг. и «Джуно» (NASA) с 2016 г. исследовали Юпитер, а «Кассини» (NASA и ESA) в 2004-2017 гг. изучал Сатурн.

Наиболее глубоко был исследован Юпитер, причем – в прямом смысле: в его атмосферу с борта «Галилео» был сброшен зонд, который влетел туда со скоростью 48 км/с, раскрыл парашют и за 1 час опустился на 156 км ниже верхней кромки облаков, где при внешнем давлении 23 атм и температуре 153 °C прекратил передавать данные, по-видимому, из-за перегрева. На траектории спуска он измерил многие параметры атмосферы, включая даже ее изотопный состав. Это заметно обогатило не только планетологию, но и космологию. Ведь гигантские планеты не отпускают от себя вещество, они навечно сохраняют то, из чего они родились; особенно это касается Юпитера. У его облачной поверхности вторая космическая скорость составляет 60 км/с; ясно, что ни одной молекуле оттуда никогда не уйти.

Поэтому мы думаем, что изотопный состав Юпитера, особенно состав водорода, характерен для самых первых этапов жизни, по крайней мере, Солнечной системы, а, может быть, и Вселенной. И это очень важно: соотношение тяжелого и легкого изотопов водорода говорит о том, как в первые минуты эволюции нашей Вселенной протекал синтез химических элементов, какие физические условия тогда были.

Юпитер быстро вращается, c периодом около 10 часов; а поскольку средняя плотность планеты невелика (1,3 г/см 3), центробежная сила заметно деформировала ее тело. При взгляде на планету можно заметить, что она сжата вдоль полярной оси. Степень сжатия Юпитера, т. е. относительная разница между его экваториальным и полярным радиусами составляет (R
экв − R
пол)/R
экв = 0,065. Именно средняя плотность планеты (ρ ∝ M/R
3) и ее суточный период (T
) определяют форму ее тела. Как известно, планета – это космическое тело в состоянии гидростатического равновесия. На полюсе планеты действует только сила тяготения (GM/R
2), а на экваторе ей противодействует центробежная сила (V
2 /R
= 4π 2 R
2 /RT
2). Их отношением и определяется форма планеты, поскольку давление в центре планеты не должно зависеть от направления: экваториальная колонка вещества должна весить столько же, сколько полярная. Отношение этих сил (4π 2 R
/T
2)/(GM
/R
2) ∝ 1/(M/R
3)T
2 ∝ 1/(ρT
2). Итак, чем меньше плотность и продолжительность суток, тем сильнее сжата планета. Проверим: средняя плотность Сатурна 0,7 г/см 3 , период его вращения 11 час, − почти такой же, как у Юпитера, − а сжатие 0,098. Сатурн сжат в полтора раза сильнее Юпитера, и это легко заметить при наблюдении планет в телескоп: сжатие Сатурна бросается в глаза.

Быстрое вращение планет-гигантов определяет не только форму их тела, а значит и форму их наблюдаемого диска, но и его внешний вид: облачная поверхность планет-гигантов имеет зональную структуру с полосами разного цвета, вытянутыми вдоль экватора. Потоки газа движутся быстро, со скоростями во многие сотни километров в час; их взаимное смещение вызывает сдвиговую неустойчивость и совместно с силой Кориолиса порождает гигантские вихри. Издалека заметны Большое Красное Пятно на Юпитере, Большой Белый Овал на Сатурне, Большое Темное Пятно на Нептуне. Особенно знаменит антициклон Большое Красное Пятно (БКП) на Юпитере. Когда-то БКП было вдвое больше нынешнего, его видели еще современники Галилея в свои слабенькие телескопы. Сегодня БКП побледнело, но все-таки этот вихрь уже почти 400 лет живет в атмосфере Юпитера, поскольку охватывает гигантскую массу газа. Его размер больше земного шара. Такая масса газа, единожды закрутившись, не скоро остановится. На нашей планете циклоны живут примерно неделю, а там − столетия.

В любом движении рассеивается энергия, а значит требуется ее источник. Каждая планета обладает двумя группами источников энергии – внутренними и внешними. Извне на планету льется поток солнечного излучения и падают метеороиды. Изнутри планету греет распад радиоактивных элементов и гравитационное сжатие самой планеты (механизма Кельвина — Гельмгольца). . Хотя мы уже видели, как на Юпитер падают крупные объекты, вызывающие мощные взрывы (комета Шумейкеров — Леви 9), оценки частоты их падения показывают, что средний поток приносимой ими энергии существенно меньше, чем приносит солнечный свет. С другой стороны, роль внутренних источников энергии неоднозначна. У планет земной группы, состоящих из тяжелых тугоплавких элементов, единственным внутренним источником тепла служит радиоактивный распад, но вклад его ничтожен по сравнению с теплом от Солнца.

У планет-гигантов доля тяжелых элементов существенно ниже, зато они массивнее и легче сжимаются, что делает выделение гравитационной энергии их главным источником тепла. А поскольку гиганты удалены от Солнца, внутренний источник становится конкурентом внешнему: порой планета греет себя сама сильнее, чем ее нагревает Солнце. Даже Юпитер, ближайший к Солнцу гигант, излучает (в инфракрасной области спектра) на 60 % больше энергии, чем получает от Солнца. А энергия, которую излучает в космос Сатурн, в 2,5 раза больше той, которую планета получает от Солнца.

Гравитационная энергия выделяется как при сжатии планеты в целом, так и при дифференциации ее недр, т. е. при опускании к центру более плотного вещества и вытеснении оттуда более «плавучего». Вероятно, работают оба эффекта. Например, Юпитер в нашу эпоху уменьшается приблизительно на 2 см в год. А сразу после формирования он имел вдвое больший размер, сжимался быстрее и был значительно теплее. В своих окрестностях тогда он играл роль маленького солнышка, на что указывают свойства его галилеевых спутников: чем ближе они к планете, тем плотнее и тем меньше содержат летучих элементов (как и сами планеты в Солнечной системе).

Кроме сжатия планеты как целого, важную роль в гравитационном источнике энергии играет дифференциация недр. Вещество разделяется на плотное и плавучее, и плотное тонет, выделяя свою потенциальную гравитационную энергию в виде тепла. Вероятно, в первую очередь, это конденсация и последующее падение капель гелия сквозь всплывающие слои водорода, а также фазовые переходы самого водорода. Но могут быть явления и поинтереснее: например, кристаллизация углерода – дождь из алмазов (!), правда, выделяющий не очень много энергии, поскольку углерода мало.

Внутреннее строение планет-гигантов пока изучается только теоретически. На прямое проникновение в их недра у нас мало шансов, а методы сейсмологии, т. е. акустического зондирования, к ним пока не применялись. Возможно, когда-нибудь мы научимся просвечивать их с помощью нейтрино, но до этого еще далеко.

К счастью, в лабораторных условиях уже неплохо изучено поведение вещества при тех давлениях и температурах, которые царят в недрах планет-гигантов, что дает основания для математического моделирования их недр. Для контроля адекватности моделей внутреннего строения планет есть методы. Два физических поля, – магнитное и гравитационное, − источники которых находятся в недрах, выходят в окружающее планету пространство, где их можно измерять приборами космических зондов.

На структуру магнитного поля действует много искажающих факторов (околопланетная плазма, солнечный ветер), зато гравитационное поле зависит только от распределения плотности внутри планеты. Чем сильнее тело планеты отличается от сферически симметричного, тем сложнее ее гравитационное поле, тем больше в нем гармоник, отличающих его от простого ньютоновского GM/R
2 .

Прибором для измерения гравитационного поля далеких планет, как правило, служит сам космический зонд, точнее – его движение в поле планеты. Чем дальше зонд от планеты, тем слабее в его движении проявляются мелкие отличия поля планеты от сферически симметричного. Поэтому необходимо запускать зонд как можно ближе к планете. С этой целью с 2016 года рядом с Юпитером работает новый зонд Juno (NASA). Он летает по полярной орбите, чего раньше не было. На полярной орбите высшие гармоники гравитационного поля проявляются заметнее, поскольку планета сжата, а зонд время от времени подходит очень близко к поверхности. Именно это дает возможность измерить высшие гармоники разложения гравитационного поля. Но по этой же причине зонд довольно скоро закончит свою работу: он пролетает через наиболее плотные области радиационных поясов Юпитера, и его аппаратура от этого сильно страдает.

Радиационные пояса Юпитера колоссальны. При большом давлении водород в недрах планеты металлизируется: его электроны обобщаются, теряют связь с ядрами, и жидкий водород становится проводником электричества. Огромная масса сверхпроводящей среды, быстрое вращение и мощная конвекция − эти три фактора способствуют генерации магнитного поля за счет динамо-эффекта. В колоссальном магнитном поле, захватывающем летящие от Солнца заряженные частицы, формируются чудовищные радиационные пояса. В их наиболее плотной части лежат орбиты внутренних галилеевых спутников. Поэтому на поверхности Европы человек не прожил и дня, а на Ио – и часа. Даже космическому роботу нелегко там находиться.

Более удаленные от Юпитера Ганимед и Каллисто в этом смысле значительно безопаснее для исследования. Поэтому именно туда Роскосмос собирается в будущем послать зонд. Хотя Европа с ее подледным океаном была бы намного интереснее.

Ледяные гиганты Уран и Нептун выглядят промежуточными между газовыми гигантами и планетами земного типа. По сравнению с Юпитером и Сатурном у них меньше размер, масса и центральное давление, но при этом их относительно высокая средняя плотность указывает на большую долю элементов группы CNO. Протяженная и массивная атмосфера Урана и Нептуна в основном водородно-гелиевая. Под ней водная с примесью аммиака и метана мантия, которую принято называть ледяной. Но у планетологов принято называть «льдами» сами химические элементы группы CNO и их соединения (H 2 O, NH 3 , CH 4 и т. п.), а не их агрегатное состояние. Так что мантия в большей степени может быть жидкой. А под ней лежит сравнительно небольшое железно-каменное ядро. Поскольку концентрация углерода в недрах Урана и Нептуна выше, чем у Сатурна и Юпитера, в основании их ледяной мантии может лежать слой жидкого углерода, в котором конденсируются кристаллы, т. е. алмазы, оседающие вниз.

Подчеркну, что внутреннее строение планет-гигантов активно обсуждается, и конкурирующих моделей пока довольно много. Каждое новое измерение с борта космических зондов и каждый новый результат лабораторного моделирования в установках высокого давления приводят к пересмотру этих моделей. Напомню, что прямое измерение параметров весьма неглубоких слоев атмосферы и только у Юпитера было осуществлено лишь однажды зондом, сброшенным с «Галилео» (NASA). А все остальное – косвенные измерения и теоретические модели.

Магнитные поля Урана и Нептуна слабее, чем у газовых гигантов, но сильнее, чем у Земли. Хотя у поверхности Урана и Нептуна индукция поля примерно такая же, как у поверхности Земли (доли гаусса), но объем, а значит и магнитный момент намного больше. Геометрия магнитного поля у ледяных гигантов очень сложная, далекая от простой дипольной формы, характерной для Земли, Юпитера и Сатурна. Вероятная причина в том, что генерируется магнитное поле в относительно тонком электропроводящем слое мантии Урана и Нептуна, где конвекционные потоки не обладают высокой степенью симметрии (поскольку толщина слоя много меньше его радиуса).

При внешнем сходстве Уран и Нептун нельзя назвать близнецами. Об этом говорит их разная средняя плотность (соответственно 1,27 и 1,64 г/см 3) и разная интенсивность выделения тепла в недрах. Хотя Уран в полтора раза ближе к Солнцу, чем Нептун, и поэтому получает от него в 2,5 раза больше тепла, он холоднее Нептуна. Дело в том, что Нептун выделяет в своих недрах даже больше тепла, чем получает от Солнца, а Уран не выделяет почти ничего. Поток тепла из недр Урана вблизи его поверхности составляет всего 0,042 ± 0,047 Вт/м 2 , что даже меньше чем у Земли (0,075 Вт/м 2). Уран – самая холодная планета в Солнечной системе, хотя и не самая далекая от Солнца. Связано ли это с его странным вращением «на боку»? Не исключено.

Теперь поговорим о кольцах планет.

Все знают, что «окольцованная планета» − это Сатурн. Но при внимательном наблюдении выясняется, что кольца есть у всех планет-гигантов. С Земли их заметить сложно. Например, кольцо Юпитера мы не видим в телескоп, но замечаем его в контровом освещении, когда космический зонд смотрит на планету с ее ночной стороны. Это кольцо состоит из темных и очень мелких частиц, размер которых сравним с длинной волны света. Они практически не отражают свет, но хорошо рассеивают его вперед. Тонкими кольцами окружены Уран и Нептун.

В общем, двух одинаковых колец у планет не бывает, они все разные.

В шутку можно сказать, что и у Земли есть кольцо. Искусственное. Оно состоит из нескольких сотен спутников, выведенных на геостационарную орбиту. На этом рисунке не только геостационарные спутники, но и те, что на низких орбитах, а также на высоких эллиптических орбитах. Но геостационарное кольцо выделяется на их фоне вполне заметно. Впрочем, это рисунок, а не фото. Сфотографировать искусственное кольцо Земли пока никому не удалось. Ведь его полная масса невелика, а светоотражающая поверхность ничтожна. Едва ли суммарная масса спутников в кольце составит 1000 тонн, что эквивалентно астероиду размером 10 м. Сравните это с параметрами колец планет-гигантов.

Заметить какую-либо взаимосвязь между параметрами колец довольно сложно. Материал колец Сатурна белый как снег (альбедо 60 %), а остальные кольца чернее угля (А = 2-3 %). Все кольца тонкие, а у Юпитера довольно толстое. Все из булыжников, а у Юпитера из пылинок. Структура колец тоже разная: одни напоминают граммофонную пластинку (Сатурн), другие – матрешкообразную кучу обручей (Уран), третьи – размытые, диффузные (Юпитер), а кольца Нептуна вообще не замкнуты и похожи на арки.

В голове не укладывается относительно малая толщина колец: при диаметре в сотни тысяч километров их толщина измеряется десятками метров. Мы никогда не держали в руках столь тонкие предметы. Если сравнить кольцо Сатурна с листом писчей бумаги, то при его известной толщине размер листа был бы с футбольное поле!

Как видим, кольца у всех планет различаются по составу частиц, по их распределению, по морфологии – у каждой планеты-гиганта свое уникальное украшение, происхождение которого мы пока не понимаем. Обычно кольца лежат в экваториальной плоскости планеты и вращаются в ту же сторону, куда вращается сама планета и группа близких к ней спутников. В прежние времена астрономы считали, что кольца вечны, что они существуют от момента зарождения планеты и останутся при ней навсегда. Сейчас точка зрения изменилась. Но расчеты показывают, что кольца не слишком долговечны, что их частицы тормозятся и падают на планету, испаряются и рассеиваются в пространстве, оседают на поверхности спутников. Так что украшение это временное, хотя и долгоживущее. Сейчас астрономы считают, что кольцо – это результат столкновения или приливного разрушения спутников планеты. Возможно, кольцо Сатурна самое молодое, поэтому оно такое массивное и богатое летучими веществами (снегом).

А так может сфотографировать хороший телескоп с хорошей камерой. Но здесь еще мы не видим у кольца почти никакой структуры. Давно была замечена темная «щель» − разрыв Кассини, который более 300 лет назад открыл итальянский астроном Джованни Кассини. Кажется, что в разрыве ничего нет.

Плоскость кольца совпадает с экватором планеты. Иного и быть не может, поскольку у симметричной сплющенной планеты вдоль экватора в гравитационном поле потенциальная яма. На серии снимков, полученных с 2004 по 2009 гг., мы видим Сатурн и его кольцо в разных ракурсах, поскольку экватор Сатурна наклонен к плоскости его орбиты на 27°, а Земля всегда недалеко от этой плоскости. В 2004 г. мы точно оказались в плоскости колец. Сами понимаете, при толщине несколько десятков метров самого кольца мы не видим. Тем не менее, черная полоска на диске планеты ощущается. Это тень кольца на облаках. Она видна нам, поскольку Земля и Солнце с разных направлений смотрят на Сатурн: мы смотрим точно в плоскости кольца, но Солнце освещает немножко под другим углом и тень кольца ложится на облачный слой планеты. Раз есть тень, значит в кольце довольно плотно упакованное вещество. Тень кольца исчезает только в дни равноденствия на Сатурне, когда Солнце оказывается точно в его плоскости; и это независимо указывает на малую толщину кольца.

Кольцу Сатурна посвящено много работ. Джеймс Клерк Максвелл, тот самый, что прославился своими уравнениями электромагнитного поля, исследовал физики кольца и показал, что оно не может быть единым твердым предметом, а должно состоять из мелких частиц, иначе центробежная сила его разорвала бы. Каждая частица летит по своей орбите – чем ближе к планете, тем быстрее.

Взгляд на любой предмет с другой стороны всегда полезен. Там, где в прямом свете мы видели черноту, «провал» в кольце, здесь мы видим вещество; просто оно другого типа, по-другому отражает и рассеивает свет

Когда космические зонда прислали нам снимки кольца Сатурна, нас поразила его тонкая структура. Но еще в XIX в выдающиеся наблюдатели на обсерватории Пик-дю-Миди во Франции именно эту структур видели глазом, но им тогда никто особенно не поверил, потому что никто кроме них такие тонкости не замечал. Но оказалось, кольцо Сатурна именно такое. Объяснение этой тонкой радиальной структуре кольца специалисты по звездной динамике ищут в рамках резонансного взаимодействия частиц кольца с массивными спутниками Сатурна вне кольца и мелкими спутниками внутри кольца. В целом теория волн плотности справляется с задачей, но до объяснения всех деталей еще далеко.

На верхнем фото дневная сторона кольца. Зонд пролетает через плоскость кольца, и мы видим на нижнем фото, как оно повернулось к нам ночной стороной. Вещество в делении Кассини стало вполне заметно с теневой стороны, а яркая часть кольца, напротив, потемнела, поскольку она плотная и непрозрачная. Там, где была чернота, появляется яркость, потому что мелкие частицы не отражают, но рассеивают свет вперед. Эти снимки показывают, что вещество есть везде, просто частицы разного размера и структуры. Какие физические явления сепарируют эти частицы, мы пока не очень понимаем. На верхнем снимке виден Янус − один из спутников Сатурна.

Надо сказать, что хоть и близко от кольца Сатурна пролетали космические аппараты, тем не менее ни одному из них не удалось увидеть реальные частицы, составляющие кольцо. Мы видим лишь общее их распределение. Отдельные глыбы увидеть не удается, не рискуют аппарат внутрь кольца запускать. Но когда-нибудь это придется сделать.

С ночной стороны Сатурна сразу появляются те слабо видимые части колец, которые в прямом свете не видно.

Это не настоящий цветной снимок. Цветами здесь показан характерный размер тех частиц, которые составляют ту или иную область. Красные – мелкие частицы, бирюзовые – более крупные.

В ту эпоху, когда кольцо разворачивалась ребром к Солнцу, тени от крупных неоднородностей ложатся на плоскость кольца (верхнее фото). Самая длинная тень здесь − от спутника Мимас, а многочисленные мелкие пики, которые в увеличенном изображении показаны на врезке, однозначного объяснения пока не получили. За них ответственны выступы километрового размера. Не исключено, что некоторые из них – это тени от наиболее крупных камней. Но квазирегулярная структура теней (фото внизу) более соответствует временным скоплениям частиц, возникающим в результате гравитационной неустойчивости.

Вдоль некоторых колец летают спутники, так называемые «сторожевые псы» или «пастушьи собаки», которые своей гравитацией удерживают от размытия некоторые кольца. Причем сами спутники довольно интересные. Один движется внутри тонкого кольца, другой снаружи (например, Янус и Эпиметей). У них орбитальные периоды чуть-чуть разные. Внутренний ближе к планете и, следовательно, быстрее облетает ее, догоняет наружный спутник и за счет взаимного притяжения меняет свою энергию: наружный притормаживается, внутренний ускоряется, и они меняются орбитами – тот, что затормозил переходит на низкую орбиту, а тот, что ускорился – на высокую. Так они делают несколько тысяч оборотов, а затем вновь меняются местами. Например, Янус и Эпиметей меняются местами раз в 4 года.

Несколько лет назад открыли самое далекое кольцо Сатурна, о котором вообще не подозревали. Это кольцо связано со спутником Феба, с поверхности которого улетает пыль, заполняя область вдоль орбиты спутника. Плоскость вращения этого кольца, как и самого спутника, не связана с экватором планеты, поскольку из-за большого расстояния гравитация Сатурна воспринимается как поле точечного объекта.

У каждой гигантской планеты есть семейство спутников. Особенно богаты ими Юпитер и Сатурн. На сегодняшний день у Юпитера их 69, а у Сатурна 62 и регулярно обнаруживаются новые. Нижняя граница массы и размера для спутников формально не установлена, поэтому для Сатурна это число условное: если вблизи планеты обнаруживается объект размером 20-30 метров, то что это – спутник планеты или частица ее кольца?

В любом многочисленном семействе космических тел мелких всегда больше, чем крупных. Спутники планет – не исключение. Мелкие спутники – это, как правило, глыбы неправильной формы, в основном состоящие изо льда. Имея размер менее 500 км, они не в состоянии своей гравитацией придать себе сфероидальную форму. Внешне они очень похожи на астероиды и ядра комет. Вероятно, многие из них таковыми и являются, поскольку движутся вдали от планеты по весьма хаотическим орбитам. Планета могла захватить их, а через некоторое время может потерять.

С малыми астероидоподобными спутниками мы пока не очень близко знакомы. Детальнее других исследованы такие объекты у Марса − два его небольших спутника, Фобос и Деймос. Особенно пристальное внимание было к Фобосу; на его поверхность даже зонд хотели отправить, но пока не получилось. Чем внимательнее присматриваешься к любому космическому телу, тем больше в нем загадок. Фобос – не исключение. Посмотрите, какие странные структуры идут вдоль его поверхности. Уже несколько физических теорий существует, пытающихся объяснить их образование. Эти линии из мелких провалов и борозд похожи на меридианы. Но физической теории их формирования пока никто не предложил.

Все мелкие спутники несут на себе многочисленные следы ударов. Время от времени они сталкиваются друг с другом и с приходящими издалека телами, дробятся на отдельные части, а могут и объединяться. Поэтому восстановить их далекое прошлое и происхождение будет нелегко. Но среди спутников есть и те, что генетически связаны с планетой, поскольку движутся рядом с ней в плоскости ее экватора и, скорее всего имеют общее с ней происхождение.

Особый интерес представляют крупные планетоподобные спутники. У Юпитера их четыре; это так называемые «галилеевы» спутники – Ио, Европа, Ганимед и Каллисто. У Сатурна выделяется своим размером и массой могучий Титан. Эти спутники по своим внутренним параметрам почти неотличимы от планет. Просто их движение вокруг Солнца контролируется еще более массивными телами – материнскими планетами.

Вот перед нами Земля и Луна, а рядом в масштабе спутник Сатурна Титан. Замечательная маленькая планета с плотной атмосферой, с жидкими большими «морями» из метана, этана и пропана на поверхности. Моря из сжиженного газа, который при температуре поверхности Титана (–180 °C) находятся в жидком виде. Очень привлекательная планета, потому что на ней будет легко и интересно работать – атмосфера плотная, надежно защищает от космических лучей и по составу близка к земной атмосфере, поскольку тоже в основном состоит из азота, хотя и лишена кислорода. Вакуумные скафандры там не нужны, поскольку атмосферное давление почти как на Земле, даже чуть больше. Тепло оделись, баллончик с кислородом за спину, и вы легко будете работать на Титане. Кстати, это единственный (кроме Луны) спутник, на поверхность которого удалось посадить космический аппарат. Это был «Гюйгенс», доставленный туда на борту «Кассини» (NASA, ESA), и посадка была довольно удачной.

Вот единственный снимок, сделанный на поверхности Титана. Температура низкая, поэтому глыбы – это очень холодный водяной лед. Мы в этом уверены, потому что Титан вообще по большей части состоит из водяного льда. Цвет красновато-рыжеватый; он естественный и связан с тем, что в атмосфере Титана под действием солнечного ультрафиолета синтезируется довольно сложные органические вещества под общим названием «толины». Дымка из этих веществ пропускает к поверхности в основном оранжевый и красный цвет, довольно сильно его рассеивая. Поэтому изучать из космоса географию Титана довольно сложно. Помогает радиолокация. В этом смысле ситуация напоминает Венеру. Кстати, и циркуляция атмосферы на Титане тоже венерианского типа: по одному мощному циклону в каждом из полушарий.

Спутники других планет-гигантов тоже оригинальны. Это Ио – ближайший спутник Юпитера. На таком же расстоянии находится, что и Луна от Земли, но Юпитер – гигант, а значит, действует на свой спутник очень сильно. Юпитера расплавило недра спутника и на нем мы видим множество действующих вулканов (черные точки). Видно, что вокруг вулканов выбросы ложатся по баллистическим траекториям. Ведь там практически нет атмосферы, поэтому то, что выброшено из вулкана, летит по параболе (или по эллипсу?). Малая сила тяжести на поверхности Ио создает условия для высоких выбросов: 250-300 км вверх, а то и прямо в космос!

Второй от Юпитера спутник – Европа. Покрыт ледяной корой, как наша Антарктида. Под корой, толщина которой оценивается в 25-30 км, океан жидкой воды. Ледяная поверхность покрыта многочисленными древними трещинами. Но под влиянием подледного океана пласты льда медленно перемещаются, напоминая этим дрейф земных материков.

Трещины во льду время от времени открываются, и оттуда фонтанами вырывается вода. Теперь мы это точно знаем, поскольку видели фонтаны с помощью космического телескопа «Хаббл». Это открывает перспективу исследовать воду Европы. Кое-что о ней мы уже знаем: это соленая вода, хороший проводник электричества, на что указывает магнитное поле. Ее температура, вероятно, близка к комнатной, но о ее биологическом составе мы пока ничего не знаем. Хотелось бы зачерпнуть и проанализировать эту воду. И экспедиции с этой целью уже готовятся.

Другие крупные спутники планет, включая нашу Луну, не менее интересны. По сути, они представляют самостоятельную группу планет-спутников.

Здесь в одном масштабе показаны наиболее крупные спутники в сравнении с Меркурием. Они ничем ему не уступают, а по своей природе некоторые из них даже более интересны.

Среди всеобщего энтузиазма, охватившего ученых начала XVII века в связи с потрясающими открытиями , одно из них прошло почти незамеченным. В 1610 году Кеплер получил от своего великого итальянского коллеги анаграмму, которая гласила: «Самую удаленную планету тройной наблюдаю…». В конце 1610 г. Галилей писал одному из своих корреспондентов: «Я нашел целый двор у и двух прислужников у Старика (Сатурна); они его поддерживают в шествии и не отходят от его боков». И вдруг эти спутники… исчезли, во всяком случае, из поля зрения телескопа. Изумленный Галилей снова и снова смотрел на небо, но не видел их. Только Гюйгенсу в Гааге, через 45 лет после первых наблюдений Галилея, удалось в какой-то степени понять тайну Сатурна. Сопоставляя свои и чужие наблюдения, он пришел к заключению, что «спутники», открытые Галилеем, являлись просто ушками тонкого, плоского кольца, почти сплошного, наклоненного к плоскости эклиптики.

Поэтому видно оно с Земли может быть по-разному. Дважды за сатурнианский год кольцо может располагаться так, что его плоскость становится параллельной лучу зрения. С ребра кольцо не видно, оно очень тонкое.

Кольцо Сатурна является замечательным объектом для наблюдений даже в небольшие телескопы. Его полные раскрытия или исчезновения повторяются через 14-16 лет. Открытие этого необычайного явления не привлекло, однако, особого внимания ученых. То был период великих революционных событий в астрономии. Факт открытия странного кольца вокруг Сатурна потонул среди них.

Некоторые астрономы XVIII и начала XIX столетий допускали, что кольцо может быть сплошным и твердым или состоять из ряда тонких сплошных колец, твердых или жидких. Но уже к пятидесятым годам XIX столетия для астрономов, наблюдавших кольцо, стало ясно, что оно не могло быть твердым телом, а должно состоять из отдельных частиц — пылинок или камней, каждая из которых как независимый спутник обращается вокруг Сатурна.

В семидесятых годах XIX столетия наиболее полное исследование строения и устойчивости кольца было проведено знаменитой русской женщиной-математиком Софьей Ковалевской. Ее выводы вскоре блестяще подтвердились спектроскопическими наблюдениями. Кольцо, действительно, оказалось состоящим из множества независимых спутников. Но откуда взялось это кольцо у Сатурна?

Астрономы XIX столетия и многие ученые нашего времени, считая кольцо устойчивым, объявляли его остатком первичного материала (из которого образовалась планета), либо результатом распада одного из спутников Сатурна, вошедшего в опасную зону вблизи планеты, где могучие приливообразующие силы могли разорвать его на части. Интересно вспомнить: у древних греков был миф о том, что Сатурн пожирал своих детей.

С 50-х годов прошлого столетия астрономические обсерватории, вооруженные все более совершенными телескопами, стали отмечать многочисленные изменения в структуре кольца. Отдельные его части то становились яркими, то были еле заметны. Тогда же Отто Струве в Пулковской обсерватории заподозрил постепенное расширение кольца и приближение его внутреннего края к поверхности планеты. Сопоставив точные измерения размеров колец, сделанные учеными на протяжении 200 лет, он нашел, что за два века внутренний край кольца приблизился к планете на 18 тысяч километров. Современные наблюдения как будто бы подтверждают расширение кольца, хотя цифры получаются несколько иными.

Новые сведения о природе колец Сатурна принесло использование могучих средств астрофизики. Еще в конце XIX столетия А. А. Белопольский (Пулковская обсерватория) отметил, что распределение яркости в спектре кольца не такое, как в спектре самой планеты. На замечательных фотографиях, полученных Г. А. Тиховым в 1909 году с помощью гигантского 30-дюймового пулковского телескопа, ясно видно, что кольцо значительно «голубее» планеты. В тридцатых годах этот вопрос детально исследовал Г. А. Шайн на Симеизской обсерватории. Результаты этих исследований и ряд более поздних работ привели астрономов к убеждению, что в отдельных частях кольца, помимо твердых частиц и тел метеоритной природы, находится лед и некоторое количество газа.

Но лед в свободном состоянии не может длительно существовать даже на таком громадном расстоянии от , на котором движется Сатурн (9,5 астрономических единиц). Вплоть до 11 астрономических единиц, т. е. до расстояния в 1,7 миллиарда километров, солнечные лучи должны испарять льды, выбрасывая образующиеся газовые частицы из солнечной системы. Такой процесс мы наблюдаем в , в которых бурно испаряющиеся замороженные газы образуют голову и хвост кометы.

Но если кольцо все время теряет вещество, то оно должно откуда-то получать и пополнение. Снаружи, извне системы Сатурна? Это невозможно! Пополнение вещества кольца и, следовательно, образование самого кольца можно объяснить только выбросами из системы Сатурна, могучими процессами извержений как на поверхности спутников Сатурна, так, возможно, и на самой планете.

Вывод о мощной вулканической активности в системе Сатурна вполне соответствует тому, что отмечали неоднократно наблюдатели на самой поверхности планеты. Не одноразово там наблюдалось появление ярких белых пятен, существовавших иногда в течение месяцев. И позже я пришел к мысли о гигантских выбросах вещества с Сатурна на основании совершенно других соображений. К этому выводу меня привело изучение… комет.

Ученые определили к сегодняшнему дню орбиты 573 комет. 442 кометы имеют периоды обращения больше 1000 лет, причем характер движения некоторых из них говорит о том, что они навсегда покидают солнечную систему. 75 комет движутся по эллиптическим орбитам небольших размеров с периодом обращения меньше 15 лет. Это так называемые кометы семейства . И остальные 56 комет обладают периодами обращения от 15 до 1000 лет. К ним относятся, в частности, кометные семейства Сатурна, и .

Преобладание комет с очень вытянутыми параболическими орбитами привело было к мысли о том, что кометы приходят из межзвездных пространств, причем большинство из них только проходит через Солнечную систему. Эту гипотезу высказал и математически разработал более двух столетий назад, французский ученый Лаплас.

Но она не выдержала последующих экзаменов, которые ей устроили многие астрономы и математики. Если бы кометы были телами межзвездной природы, мы должны были бы наблюдать резко гиперболические орбиты, а этого нет.

Если вы любите шахматы, то встречались, наверное, с задачами на ретроградный анализ. Смысл их в том, что по позиции на доске надо восстановить серию ходов, которая к ней привела. Похожая задача была решена астрономами. Для многих комет, у которых был отмечен слабо-гиперболический характер движения, были вычислены все возмущения со стороны планет, чтобы выяснить, какой была орбита до вступления в область планетного воздействия. Во всех случаях начальная орбита оказывалась эллиптической, говорящей о принадлежности комет к Солнечной системе.

Точные астрофизические исследования и применение методов фотометрии и спектрального анализа позволили выяснить состав комет. Светящиеся головы и хвосты комет состоят из чрезвычайно разреженных газов (главным образом углеводородов, циана, окиси углерода, молекулярного азота и т. п.), преимущественно в виде ионизированных атомов и молекул. Кометные газы, несомненно, являются продуктами распада более сложных родительских молекул под действием солнечной радиации. Ядра комет должны состоять из твердых частиц. В последнее время было доказано, что газы в кометах находятся в замороженном состоянии, в виде льда, часто «загрязненного» включением мельчайшей пыли.

Был также установлен исключительной важности факт: кометы быстро слабеют. От появления к появлению они становятся все менее яркими и за 10-20 появлений ослабевают в десятки и сотни раз!

Стало ясно, что кометы быстро истощают запасы газообразующих материалов, из которых возникают туманные головы и хвосты комет. Следовательно, кометы совсем недавно должны были появиться в области планет. Астрономы определили возраст многих комет. Он оказался очень невелик: каких-нибудь несколько сотен, а иногда даже десятков лет. Но как же объяснить существование большого числа короткопериодических комет?

Лаплас считал, что они просто «пленники» больших планет, особенно Юпитера, перехвативших их по дороге и заставивших сменить орбиты, которые до этого были параболическими. Но многие особенности движения комет говорили против Лапласа. Наоборот, похоже, что кометы сейчас, в наше время, рождаются в солнечной системе и что они имеют определенное отношение к системе Юпитера, так как все короткопериодические кометы тесно связаны с этой планетой. Вначале было сделано предположение о том, что они выбрасываются, извергаются непосредственно с поверхности Юпитера и других больших планет. Но затем оказалось, что еще лучше отвечает наблюдениям предположение о выбросе комет с поверхности спутников Юпитера.

Тем временем выяснились и другие замечательные особенности комет. По своему составу кометные льды оказались чрезвычайно близкими к газам планетных атмосфер и, в частности, атмосфер, открытых на спутниках Сатурна и Нептуна — Титане и Тритоне. Ряд данных говорил о том, что большие спутники Юпитера покрыты слоем замерзшей атмосферы, т. е. льдом.

Многие кометы сопровождаются метеорными потоками. Эти два явления связаны, по крайней мере, общим происхождением. А исследование метеоритов в лабораториях, изучение их структуры и химического состава приводит к заключению о том, что они являются обломками коры планетных тел. Крупнейший русский вулканолог и специалист по метеоритам А. Н. Заварицкий нашел, что большинство каменных метеоритов весьма близко по структуре к туфовым породам вулканических районов Земли. Еще ранее другой выдающийся минеролог В. Н. Лодочников приходил к заключению о возможности образования метеоритов и потоков метеорных тел при гигантских земных извержениях.

Время жизни метеорных потоков тоже оказывается не более нескольких сот или тысяч лет. Характер орбит говорит о том, что метеорные частицы принадлежат солнечной системе и, несомненно, образовались внутри нее. Значит, те потоки метеоров, которые мы сейчас наблюдаем, должны иметь совсем недавнее происхождение.

Связь метеорных потоков с кометами является дальнейшим подтверждением вулканического или взрывного происхождения малых тел солнечной системы. Всякое извержение должно сопровождаться выбросом громадных количеств пепла и песка, которые будут образовывать метеорные потоки в солнечной системе.

Таковы были основания, которые легли в основу предположения о том, что кольцо Сатурна имеет кометно-метеоритную природу. Но почему только в одном частном случае с Сатурном природа не поскупилась на кольцо для планеты? Это не так. Вокруг Юпитера также должны обращаться облака, состоящие из комет и метеоритных тел, то есть камней и частиц пепла. Извержение на спутнике Юпитера должно придать веществу скорость в 5-7 километров в секунду, чтобы образовалась новая комета. Но значительно больше камней и частиц будут иметь при этом меньшие скорости, Юпитер удержит их своим притяжением и соберет вокруг себя в виде кольца.

Где же оно? Ведь у Юпитера мы не наблюдаем такого яркого и заметного образования, каким является кольцо Сатурна. Здесь нужно иметь в виду, что, даже если бы у Юпитера имелось такое же массивное кольцо, как Сатурново, мы не могли бы видеть ничего похожего на то, что наблюдается у Сатурна. Дело заключается в том, что плоскость экватора Сатурна наклонена к эклиптике (т. е. плоскости движения планеты) на 28°, отчего мы и можем видеть кольцо «раскрытым», а у Юпитера наклон составляет всего 3° и, следовательно, юпитерово кольцо мы всегда видим с ребра, (так же как это бывает в периоды «исчезновения» ). Когда в результате движения Сатурна и Земли мы оказываемся вблизи плоскости кольца, оно пропадает; ушки не видны, а на диске планеты вдоль экватора выступает темная полоса — «тень кольца».

Продолжение следует.

P. S. О чем еще думают британские ученные: о том, что, рано или поздно, но людям таки удастся колонизировать другие планеты нашей солнечной системы. И тогда на поверхности Сатурна или Юпитера какая-нибудь станция обезжелезивания воды будет вполне обычным явлением. Но пока все это звучит как научная фантастика.